PLANE NONSTATIONARY GAS FLOW WITH
A STRONG DISCONTINUITY

V. M. Teshukov

The problem of plane, nonstationary gas motion under the effect of a piston in the shape of a
dihedral angle moving at constant velocity in the gas is considered. In contrast to one-
dimensional motion under the effect of a flat piston, a curvilinear shockwave originates here,
and the flow becomes nonisentropic and vortical, This problem is examined herein in a
linear formulation when the angle of the piston breakpoint is assumed small. The linear
problem reduces to an inhomogeneous Riemann—Hilbert problem whose solution is found ex-
plicitly. The problem under consideration adjoins a circle of problems associated with
shockwave diffraction and reflection studied by Lighthill [1], Smyr] [2], Ter-Minassiants [3],
etc.

1. Formulation of the Problem. A polytropic gas, at rest at t < 0, is set in motion under the effect
of the walls of a dihedral angle to which a constant velocity U, = (U, V,) has been communicated at t = 0 so
that the normal velocity components of the wall motion are directed toward the gas. A shockwave,whose
front will be planar far from the vertex of the angle and curved in the domain of influence of the vertex, is
formed ahead of the angular piston, It is required to compute the velocity and pressure fields in the region
of influence of the vertex and, particularly, to determine the shockwave shape and the pressure on the piston,

Let us introduce a Cartesian rectangular X,Y coordinate system in the flow plane so that the origin
would coincide with the vertex at t = 0, and the X axis would be directed along the axis of piston symmetry.
Far from the vertex the flow is described by the known one-dimensional solution.

We seek the solution in the perturbed domain in the class of conical flows [4], by assuming all the de-
sired functions v°, v°, p°, p°, S° to be dependent on the variables ¢ = X/t, n = Y/t. Here ¢ = u°, v°) is the
gas velocity, p° is the pressure, p° is the density, S° is the entropy, and t is the time.

Let us introduce the new desired functions

U:uo_gv V:UO—W P:po(g, T])» R:PD(Ev "1), (1'1)
§ =256 n

The system of gasdynamics equations will reduce to the following:

(U)U+RIWP+U=0, UVR+R(ivU+2)=0, U.VS5 =0 1.2)

The perturbed flow domain is bounded by a line of degeneration of the type of the system (1.2) (AB and
CD in Fig. 1)
[UP=02+V2= 2 (C* =YR'P) (1.3)
by the unknown shock front BC and the piston AED at the subsonic veloeity A7

If the velocity V is greater than the speed of sound, the vertex of the angle E would be outside the
domain of ellipticity (given by the inequality |U| < C) and a domain of hyperbolicity (|U| > C) EDCF is added
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to the domain of ellipticity ABCD; the line EF will be
either a characteristic or the shock front depending on
whether the piston aperture is greater or less than = .

The Hugoniot conditions, connecting the solution in
the perturbed domain with known solutions in other do-
mains, should be satisfied on the shock fronts, the condi-
tion of impenetrability should be satisfied on the piston,
and the condition of continuous contact on all the remain-
ing boundaries.

2. Equations and Boundary Conditions of the Linear
Problem. Let the angle of the piston break ¢ be small.
Let us linearize the problem with respect to the small

\

[/
(] 8 parameter a by taking the one-dimensional flow, which is
obtained for o = 0, as the fundamental solution. Let us
H
Fig. 2 represent the desired functions as follows:

U=Uy—t+alu, V=—n+alpw, P=p +apCUyp,
R=p,(1+ap) (2.1)
Here, py, py, C; are the gas parameters in the fundamental constant solution, After linearization, a

linear system of equations is obtained for the dimensionless perturbations u, v, p, p considered as functions
of the dimensionless variables x and y

(x-Viu=Vp
. — U, \
(x-V)p = Uy (divu) / C; <z:a & > y:%l)
(x-V)p=divu 2.2)

Eliminating u and v from the last equation, we obtain an equation for the single function p

(@ — Dpax+ 2 2ypry+ 4 — 1V Py + 22px +-2ypy, =0 (2.3)

The boundary conditions of the linear problem are obtained by linearizing the boundary conditions of
the nonlinear problem and by carrying them over to the corresponding unperturbed boundaries. Let us
write the equation of the perturbed portion of the shock front BC as

Do—U (r— 1) M2 2 T Dy
s=htof(y)  (i=DD :[mw)—w:i,] ,M:TO-> @.4)

Here, D, is the velocity of the unperturbed (o = 0) shock, C, is the speed of sound in the gas at rest in
front of the shock, y is the adiabatic index. Using the Hugoniot relations on the shock, u, v, p, p can be cal-
culated on the front (2.4)

w=INT(G@) — o @) (L= )
v=—f (1) (N =4 (T_M:)Tuhzi) 2.5)
P=N2UW—u W) p=mrmE (@)= @)
A relationship which the function p should satisfy on the boundary BC (BF) (Fig. 2)
(# — Op. + (L +ky — Nky™lp, =0 (2.6)

follows from (2.5) and (2.2).

For the subsonic velocity V,, i.e., when Vj < C; (without limiting the generality it can be considered
that V, = 0), the vertex E is within the domain of ellipticity.

From the impenetrability condition we obtain

ufar = Vol Uy, uflzp = — Vo ] Uy
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Therefore, we have on the boundary AED

Rlr—)M43] Vo> 2.7

Pe=—Thb (y—k) ‘(T: KOE—1) 't G

Here, 6(x) is the Dirac function. For ky > 1 the condition pgx = 0 is satisfied on ADE. The conditions
of continuous contact with the known flow

P =DPgs P =Pp U=1U, V=17
are satisfied on a line of degeneration of the type of (2.3) AB (x* + y2 =1, Fig. 2).
All these quantities are calculated by means of (2.5) if it is assumed that

1 M2
f(y):—y—{——q’g—klm

The continuous contact

P=—Psy 0= —Pgy U= —Uy V= """

also holds on CD in the subsonic case.

For ky > 1 this same flow is in contact with the perturbed flow in the hyperbolic domain EFCD
through the weak compression or rarefaction EF shock (depending on the sign of «). In addition to the con-
ditions listed above, the condition of smoothness of the shock front at the points B and C

.
S I;—ydyz—N‘l(l—{—f'(k’)):K C=k k= V=D 2.8)

—K
should be satisfied.

Ifky < 1, then f'(') =1;if k; > 1, then f' (') is determined after the problem has been solved in the
hyperbolic domain.

3. Solution of the Problem in the Hyperbolic Domain, It can be shown that the function p will be
piecewise~constant in the hyperbolic domain, The domains of constant p will be connected through weak
compression and rarefaction shocks. The rarefaction shocks originate from the linearization of certain
rarefaction waves in the nonlinear problem. The fronts of these shocks coincide, in a first approximation,
with the characteristics tangent to a unit circle, The following relationships

Uy — Uy = (Pg — P17y, Uy ~— Uy = (Pp — PRy, Pp — P1 = UyCy™t (py — p1) (3.1)
can be obtained from the Hugoniot conditions for weak shoecks.

Here, n= (n,, 0y) is the normal to the characteristic on which the shock occurs in the linear approxima-
tion; the subscript 1 denotes the state in front of the shock, and the subscript 2 the state behind the shock.
The quantity of shocks depends on the quantity k. All the weak shocks are easily computed by using the re-
lationships (3.1).

As an illustration, let us consider the case pictured‘in Fig. 2, when there are five such shocks. The
pressure p1 on the discontinuity EF, is determined in domain 1 from the condition of impenetrability u =
Vy/Uqy on EG. In domain 2 the desired functions should satisfy the Hugoniot conditions on F;G and F,F,.

Such a solution can be constructed by introducing a contact discontinuity going, in a first approxima-
tion, along the straight contact characteristic F,0 of the fundamental solution. The quantity p? is deter-
mined from the condition on the contact discontinuity, Indeed, the function f(y) is determined from (2.5)
and the condition of passage of the front through the point F; by means of the known p?. By means of the
known f(y) the u and v behind the contact discontinuity are determined. Ahead of the contact discontinuity
u and v are expressed in terms of p? from conditions (3.1) on the shock F{G. The condition of equal normal
gas velocity components on F,O yields an equation to determine p*. We determine p? in domain 3 from the
condition of impenetrability on the boundary GH, as in domain 1; hence, the conditions on the contact dis-
continuity F,0 are satisfied automatically. In domain 4 it is necessary to introduce a new contact discon-
tinuity F,O and to determine p? from the conditions on this contact discontinuity, as in domain 2, etc,
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/ After the computation in the hyperbolic domain,
Y u, v, p, p are determined along CD. All these quanti-
ties have discontinuities at the point Q, and u, v, p at
the points of intersection of the contact characteristics
N _2’.;1, ! » Fi0 with the sonic circle., Let p = px on DQ and p = p*
228 ¢ (7’,0 on QC, The position of the point Q is given by the polar
; f A =T, angle 0* = 6* (), measured from the x axis.
1 ’Z" %
I < \_\ ] 4. Finding the Solution in the Elliptic Domain.
#] L In the elliptic domai
~ "y 7 & 7 n the elliptic domain
|
A 8 M \} . 28 (=t
*o o r=mwyr. 0= (Bzarctg(y/z)) @)
Fig.3 Fig. 4

is reduced to a Laplace equation by means of the
Busemann —Chaplygin transformation. Let

g, = Pcosd, m = Psin®, =8 Fin

The conformal mapping

z:lniig—]—%m‘ 4.2)

maps the domain ABCD in the ¢ plane into the rectangle

i 14k

0<A< Ay =

in the z = X + iu plane (Fig. 3).
Let us consider the analytic function

®(z) = px — ipy 4.3)

By virtue of the conditions of the boundary value problem, an inhomogeneous Hilbert problem origi-
nates with the discontinuous coefficients

a(z)pr — blz) pp=o(z) z<E1T) (4.4)
Here, T is the contour ABCD and the coefficients a, b, and ¢ are given by the formulas

A="Xy a=-sin peosp, b= Nkl — k) — Lcos®p, ¢ =0
—_ __kZ—l/z _ k 1
A=0:a=1, b=0, q):{ Thy (4 — )8 (p — o) (B <<1)

0, (kr>1)
01 (k1<1)
=ma=1, b=0, q):{ 4.5)
* (@* —p) S —hy) (b >1)
p=0:a=4 b=0 ¢g=0
1—VIZTEe 1 1 0"
(o= 2arorg L= F=EE y — o)

Since the coefficients of the Hilbert problem are discontinuous at the points B and C, the set of its
solutions can be divided into classes of bounded or unbounded solutions at these points. Besides (4.4) and
(4.5), it is necessary to impose additional conditions, the condition of smoothness of the shock front at the
points B and C (2.8) and the condition of the variation of p along BC by a definite quantity

c —2p (<1), ¢ _Pu ,
A= Ay dy = — _du=—kK 4.,6)
L [} §pl" l'l‘ {p* _ pz (k1>1), § cos 1y p‘ (

The solution of the problem (4.4)-(4.6) in the class of functions bounded at the points of discontinuity
of the coefficients is unique. To construct it, let us map the rectangle ABCD into the upper half plane by
using the function
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0, — iz, 1—k
vE) = GeanCEy =TT “.n
Here and henceforth, 44, &4, 44, ¢, are elliptic theta functions [5]. The Hilbert problem in a half
plane reduces in a known way to the Riemann problem [6]. The index of the Riemann problem turns out to
equal one, i.e,, the solution is determined to the accuracy of two arbitrary constants which are found
uniquely from conditions (4.6). If the canonical solution X (w) is known for the corresponding homogeneous
problem, then the solution of the inhomogeneous problem is written explicitly as

_Xw e »
® () =28 { 0K 4 X () (Buw + D)) 4.8)

—c0

where By and Dy are arbitrary real constants, X*(¢) are the limit values of the function X (w) in the upper
half plane, The solution of the problem therefore reduces to the construction of the canonical solution of
the homogeneous problem. Let us represent X(w) as

X(w) = X (w)Xy(w) 4.9)
where X (w) satisfies the condition on BC, and X, (w) has a piecewise-constant argument on the boundary,
The first conditions (4.4), (4.5) can be written as [1]

arg X(w(z)) = arc tg(ay, tg p) + arc tg (B, tg 1)

k dlBl Nk
=L—Nisr = (4.10)

1 _
o1+ B ! o+ B 1 —k2

Let us expand the right side of (4.10) in a Fourier sine series

arg X (w (z)) = — 3 E=T =00 gjy oy (4.11)
n=1

a = (o — 1) /(ay 1), b= @ —1/B +1

Let us assume X, (w) to equal

X @) =expl— 3 @—a — ") ;552 (4.12)

The argument of this function on BC equals (4.11) to the accuracy of an additive constant. A mixed
problem of the theory of functions is obtained to determine X, (w), whose solution is given by the formula

o i o 9s(0, @) s (—iz, q)
Xy (w) = View =180, 9) Ba (— 17, 9) (4.13)

We finally obtain

O @)= X&) |~ pmomwe TEPE@ D] <y (4.14)

D (z) = X (w(2)) {%—w—(?ﬂ%m + Byw (z) + Dl] (k1> 1)

Here the function X(w(z)) is defined by 4.9), (4.12), (4.13) and

7 Tk B2 (0, 9) 042 (0, ¢) B2 (o, 7) V4 (o, 9)
T YT ke U5 (0, g) Bs? (po, ) X (iuo)

B2 (0, ) §2* (0, ¢') B2 (M1, ¢’) B1 (M1, ¢) < , n?
05 (0, ¢) 8% (A, @) X (M) g=exp m)

(4.15)
Ty = (p* — Ps)

Calculating the limit values of &(z)on BCand separating out the imaginary part, we find Py » after
which we determine the constants B, and D, from conditions 4.6).

Numerical computations were performed by means of the formulas obtained for different values of k
and k;. Represented in Fig. 4 are graphs of the functions py = p(0, y), the pressure on the piston, p, =
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pk, y),the pressure behind the shock on its front, and £ (y),which yields the shape of the shock computed
for k=¥, k; =%. As is seen from the figure, the pressure on the piston rises monotonically as the point
E, the vertex of the dihedral angle, is approached. The function p has a logarithmic singularity at the point
E.

After the function p has been determined in the elliptic domain, the functions u, v, p are found from
(2.2) by quadratures.

The author is grateful to L. V. Ovsyannikov for interest in the research and useful comments.
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